Insulin, Glucose, and the Brain: What does this mean for persons with Schizophrenia

Mahavir Agarwal, MBBS, MD, PhD
Staff Psychiatrist and Clinician-Scientist,
Medical Head, Clinical Research,
Schizophrenia Division, Centre for Addiction and Mental Health
Associate Professor, Department of Psychiatry,
University of Toronto

Objectives

- 1. Review and recognize the historical overlap between metabolic health and schizophrenia pathophysiology
- Review bidirectional relationships between insulin action in the brain and schizophrenia pathophysiology
- Recognize how addressing this overlap can lead to better treatment outcomes

The Why

The two decades of life lost

- Patients with Severe Mental Illness have a 20% reduced life-expectancy and a 2x of standardized mortality ratio from CV disease (Hennekens C 2005)
- •>50% are obese, ~25% are overweight (Correll 2010)

Diabetes and Mental Illness

"diabetes is a consequence of prolonged sorrow" Thomas Willis, 17th century

"diabetes is a disease which shows itself in families in which insanity prevails" Sir Henry Maudsley, 18th century

Interplay between diabetes and mental illnesses

Factors associating mental illness with obesity/diabetes

Mental Illness

Illness biology

Genetic links between SCZ and metabolic dysfunction

Diabetes
Obesity
MetS

Life style factors:

Poor self care
High smoking rates
Inactivity
Poor dietary habits

Treatments:

Antipsychotics **
Antidepressants
Mood stabilizers

Systems factors

Reduced access to physical care "Silo working": Poor co-ordination between health providers Policy ambiguities

Treatment advances in schizophrenia

- "Second generation" antipsychotics (AP): reduced burden of motor-related side-effects as compared to "first generation antipsychotics"
- Significant metabolic side-effects:
 - Weight gain
 - Insulin resistance
 - Atherogenic lipid profile

AP-Related Risk of Diabetes in Schizophrenia

Danish population based cohort study (all persons born 1977-2013; n= 2.7 million, 49,582,279 person years); Hazard risk Diabetes after AP vs risk in AP-naïve SCZ

Rajkumar et al, 2017

How well are we dealing with it?

Implications beyond cardiovascular morbidity & mortality

Medication compliance

Self-esteem

Hospitalization rates

Quality of life

Social retreat

Social care costs

De Hert et al, 2006, 2007; Lyketsos et al, 2002; McCrone et al, 2008

Summary: objective 1

 Cornerstone of our management strategies cause metabolic problems

Metabolic problems add to the burden of illness

Newer targets/strategies sorely needed

Objectives

- 1. Review and recognize the historical overlap between metabolic health and schizophrenia pathophysiology
- 2. Review bidirectional relationships between insulin action in the brain and schizophrenia pathophysiology
- Recognize how addressing this overlap can lead to better treatment outcomes

Metabolic abnormalities and the brain

- Smaller hippocampal and cortical volume seen with insulin resistance
- Intranasal insulin does not seem to work in schizophrenia patients
- CNS insulin resistance in schizophrenia
- Do metabolic aberrations (chronic) block improvement?

Hajek 2014; Fan 2011, 2013; Mackenzie et al 2018; Agarwal 2020a, 2020b

Metabolic abnormalities and cognition

Fig. 2. Forest plot of cognitive differences between schizophrenia patients with and without metabolic syndrome.

Fig. 3. Forest plot of cognitive differences between schizophrenia patients with and without diabetes mellitus.

Bora et al, 2017

Poor metabolic health predicts mental illness

- Avon Longitudinal Study of Parents and Children
- 10,463 individuals
- Elevated insulin levels (a marker of insulin resistance) during puberty predict development of psychosis in early adulthood
- Elevated BMI predict development of mood disorders

Perry et al., JAMA Psychiatry 2021

Antipsychotic(AP)-Related Risk of Diabetes in Schizophrenia

 Danish population based cohort study (all persons born 1977-2013; n= 2.7 million, 49 582279 person years); Hazard risk Diabetes after AP vs risk in AP-naïve SCZ

Metabolic abnormalities and cognition

CATIE: small effect on cognition of doubtful clinical relevance

Do metabolic aberrations block improvement?

Mackenzie, Kowalchuk, Agarwal et al 2018

Antipsychotic medications & diabetes

Kowalchuk et al 2018

Effects of antipsychotics on glucose metabolism

RODENT MODEL

Single peripheral doses

- •Olanzapine*^
- •Clozapine*^
- •Risperidone*

•lloperidone*

Impaired insulin sensitivity* and/or secretion ^

HUMAN MODEL

Sub-chronic to acute oral dose olanzapine (1 study aripiprazole):

Teff K et al. 2013 Vidarsdottir et al. 2010 Sacher et al. 2008; Hahn et al. 2014

Chintoh et al. 2008; 2009 Hahn et al. 2014 Houseknecht et al. 2008 Martins et al. 2010 Albaugh et al. 2010 Wu C et al. 2014

Early disturbances in parameters of glucose and lipid metabolism

Insulin, the brain, and metabolism

Novak et al, 2014 Kullmann et al, 2016

Insulin

Cognition

Psychopathology and motivation

Venkatasubramanian et al, 2007 Zhang et al, 2015 Caravaggio et al, 2015

Summary: objective 2

 Two-way relationship between metabolic and psychiatric disorders

 Use metabolic liability as an investigative opportunity: a testable hypothesis

Discover newer targets

Focus on both central and peripheral players

Objectives

- 1. Review and recognize the historical overlap between metabolic health and schizophrenia pathophysiology
- 2. Review bidirectional relationships between insulin action in the brain and schizophrenia pathophysiology
- Recognize how addressing this overlap can lead to better treatment outcomes

Antipsychotics and brain insulin resistance?

Kowalchuk et al, 2017; Castellani et al, 2018

Rodent 2DG Protocol

Do antipsychotics block brain insulin action in humans?

Prevention of weight gain in SMI

The Assessment Stock	Metformin			Placebo				Mean Difference	Mean Difference	Risk of Bias
Study or Subgroup	Mean [kg]	SD [kg]	Total	Mean [kg]	SD [kg]	Total	Weight	IV, Random, 95% CI [kg]	IV, Random, 95% CI [kg]	ABCDEFG
Arman 2008a	36.03	12.81	16	32.03	22.45	16	1.9%	4.00 [-8.67, 16.67]	-	→ ? • ? ? • ? •
Baptista 2006	63.8	10.2	19	65.6	8.5	18	8.4%	-1.80 [-7.84, 4.24]		0077000
Rado 2016a	2.54	2.35	12	5.88	5.23	13	31.0%	-3.34 [-6.48, -0.20]	-	000000
Wu 2008a	1.9	2.72	18	6.87	4.23	19	58.7%	-4.97 [-7.25, -2.69]	-	0002020
Total (95% CI)			65			66	100.0%	-4.03 [-5.78, -2.28]	•	
Heterogeneity: $Tau^2 = 0.00$; $Chl^2 = 2.91$, $df = 3$ (P = 0.41); $l^2 = 0$ % Test for overall effect: $Z = 4.52$ (P < 0.00001) Favours metformin Favours placebo										

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Metformin for treatment of weight gain

Test for subgroup differences: $Chi^2 = 18.63$, df = 1 (P < 0.0001), $I^2 = 94.6\%$

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)
- (G) Other bias

Can metformin prevent clozapine-induced weight gain?

Effect on other metabolic parameters

a) Fasting Blood Glucose (mmol/L)

b) Triglycerides (mmol/L)

Controlling for: age, sex, smoking status, baseline glucose

Controlling for: age, sex, smoking status, baseline triglyceride

Effect of metformin on clozapine continuation rates

Depression-Insulin resistance-Metformin

- 45 insulin resistant (HOMA-IR≥1.8) patients with bipolar depression randomized to metformin (minimum 1500 mg/day) or placebo
- Outcomes of interest: MADRS and GAF
- 10/20 reverted in metformin group; 1/25 reverted in placebo group
- Converters experienced symptom, social, and occupational improvement

Depression-BBB leakage-metformin

(A)BBB leakage prior to treatment with metformin

(B) BBB repair after 14-weeks treatment with metformin

(C) BBB leakage before and after 14-weeks treatment with metformin

Calkin et al, 2022b

Summary: objective 3

 The brain was long considered an insulininsensitive organ

 Central regulation of glucose metabolism poorly understood

Better metabolic health can improve mental health

Early intervention is likely to be more helpful

Conclusions

High rates of medical co-morbidity, including diabetes, obesity

Low rates of monitoring & treatment

Need to do more

- Early intervention
- New medications/strategies

Email: Mahavir.Agarwal@camh.ca

Margaret Hahn **Gary Remington**

Nicolette Stogios Sally Wu Kateryna Maksyutynska Femin Prasad **Emily Smith** Riddhita De

